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Abstract

A general analysis of poroelasticity for hexagonal, tetragonal, and cubic symmetry shows that

four eigenvectors are pure shear modes with no coupling to the pore-fluid mechanics. The remaining

two eigenvectors are linear combinations of pure compression and uniaxial shear, both of which

are coupled to the fluid mechanics. The analysis proceeds by first reducing the problem to a 2× 2

system. The poroelastic system including both anisotropy in the solid elastic frame (i.e., with

“hard anisotropy”), and also anisotropy of the poroelastic coefficients (“soft anisotropy”) is then

studied in some detail. In the presence of anisotropy and spatial heterogeneity, mechanics of the

pore fluid produces shear dependence on fluid bulk modulus in the overall poroelastic system. This

effect is always present (though sometimes small in magnitude) in the systems studied, and can

be comparatively large (up to a maximum increase of about 20 per cent) in some porous media —

including porous glass and Schuler-Cotton Valley sandstone. General conclusions about poroelastic

shear behavior are also related to some recently derived product formulas that determine overall

shear response of these systems. Another method is also introduced based on rigorous Hashin-

Shtrikman-style bounds for nonporous random polycrystals, followed by related self-consistent

estimates of mineral constants for polycrystals. Then, another self-consistent estimation method

is formulated for the porous case, and used to estimate drained and undrained effective constants.

These estimates are compared and contrasted with the results of the first method and a consistent

picture of the overall behavior is found in three computed examples for polycrystals of grains having

tetragonal symmetry.
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INTRODUCTION

Although evidence of pore-fluid enhancement of shear modulus in anisotropic poroelastic

media has been known for some time, little analysis of this phenomenon has been available

in the literature. For example, an important paper by Gassmann (1951) concerns the effects

of fluids on the mechanical properties of porous rock. His main result is the well-known

fluid-substitution formula (that now bears his name) for the bulk modulus in undrained,

isotropic poroelastic media. He also postulated that the effective shear modulus would be

independent of the mechanical properties of the fluid when the medium is isotropic. That

the independence of shear modulus from fluid effects is guaranteed for isotropic media at

very low or quasistatic frequencies was shown recently by Berryman (1999) to be tightly

coupled to the original bulk modulus result of Gassmann; each result implies the other in

isotropic media. It has gone mostly without discussion in the literature that Gassmann

(1951) also derived general results for anisotropic porous rocks in the same 1951 paper. It

is not hard to see that these results imply, contrary to the isotropic case, that the overall

undrained shear modulus in fact generally does depend on fluid properties in anisotropic

media. However, Gassmann’s paper does not remark at all on this difference in behavior

between isotropic and anisotropic porous rocks. Brown and Korringa (1975) also address

the same class of problems, including both isotropic and anisotropic cases, but again they

do not remark on the shear modulus results in either case.

On the other hand, Hudson (1981), in his early work on cracked solids, explicitly demon-

strates differences between fluid-saturated and dry cracks and relates his work to that of

Walsh (1969) and O’Connell and Budiansky (1974), but does not make any connection to

the work of either Gassmann (1951), or Brown and Korringa (1975). Mukerji and Mavko

(1994) show numerical results based on work of Gassmann (1951), Brown and Korringa

(1975) and Hudson (1981) demonstrating the fluid dependence of shear in anisotropic rock,

but again they do not remark on these results at all. Mavko and Jizba (1991) use a simple

reciprocity argument to establish a direct, but approximate, connection between undrained

shear response and undrained compressional response in rocks containing cracks. Berryman

and Wang (2001) show that deviations from Gassmann’s results sufficient to produce shear

modulus dependence on fluid mechanical properties require the presence of anisotropy on the

microscale, thereby explicitly violating the microhomogeneous and microisotropy conditions
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implicit in Gassmann’s original derivation. Berryman et al. (2002a) go further and make

use of differential effective medium analysis to show explicitly how the undrained, overall

isotropic shear modulus can depend on fluid trapped in penny-shaped cracks. Meanwhile,

laboratory results [see Berryman et al. (2002b)] show conclusively that the shear modulus

does depend on fluid mechanical properties for low-porosity, low-permeability rocks, and

high-frequency laboratory experiments (f > 500 kHz).

A simple example showing how the presence of anisotropy influences the shear modulus,

and specifically how the shear modulus becomes fluid dependent would be most helpful for

our intuition in poromechanics. The purpose of this work is therefore to demonstrate in some

detail how the shear behavior becomes dependent on fluid properties in anisotropic media.

Two distinct but related analyses addressing this topic have been presented recently by the

author (Berryman, 2004a; 2005). Both of these papers made explicit use of layered media

— having layers composed of isotropic poroelastic materials — together with exact results

for such media based on Backus averaging (Backus, 1962). In contrast, the present analysis

does not make use of such a specific model. To separate the part of the system response

due to poroelastic effects, from the part that would be present in any elastic material, we

specifically distinguish two possible sources of anisotropy: the elastic, or “hard,” anisotropy,

and the poroelastic, or “soft,” anisotropy arising from pore-pressure effects. Both types of

anisotropy will be present in the study that follows.

Our analysis for hexagonal, tetragonal, and cubic media is presented in the next three

sections. In particular the “Eigenvectors” section also introduces the effective undrained

shear modulus relevant to our general discussion. Examples are presented for glass and one

sandstone. The paper’s results and conclusions are summarized in the final section. Two

Appendices collect some mathematical details needed in the main text. In particular, Ap-

pendix B provides a different and more general proof of the product formulas used repeatedly

in the text.

FLUID-SATURATED POROELASTIC MEDIA

In contrast to traditional elastic analysis, the presence in rock of a saturating pore fluid

introduces an additional control field and an additional type of strain variable. The pressure

pf in the fluid is a new field parameter that can be controlled. Allowing sufficient time for

global pressure equilibration will permit us to consider pf to be a constant throughout the
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percolating (connected) pore fluid, while restricting the analysis to quasistatic processes.

The change ζ in the amount of fluid mass contained in the pores [see Biot (1962) or Berryman

and Thigpen (1985)] is a new type of strain variable, measuring how much of the original

fluid in the pores is squeezed out during the compression of the pore volume while including

the effects of compression or expansion of the pore fluid itself due to changes in pf . It is most

convenient to write the resulting equations in terms of compliances rather than stiffnesses,

so the basic equation to be considered takes the following form for isotropic media:















e11

e22

e33

−ζ















=















s11 s12 s12 −β
s12 s11 s12 −β
s12 s12 s11 −β
−β −β −β γ





























σ11

σ22

σ33

−pf















, (1)

where eij and σij for i, j = 1, 2, 3 are the components of overall strain and stress, respectively,

in 3D. The constants appearing in the matrix on the right hand side will be defined in the

following two paragraphs. The compliances sij appearing in (1) are simply related to the

drained elastic constants λd and Gd in the same way they are related in normal elasticity.

So, we find that

s11 =
1

Ed

=
λd +Gd

Gd(3λd + 2Gd)
(2)

and

s12 = − νd

Ed

, (3)

where the drained Young’s modulus Ed is defined by the second equality of (2) and the

drained Poisson’s ratio is determined by

νd =
λd

2(λd +Gd)
. (4)

When the external stress is hydrostatic so σ = σ11 = σ22 = σ33, equation (1) telescopes

down to




e

−ζ



 =
1

Kd
R





1 −α
−α α/B









σ

−pf



 , (5)

where e = e11 + e22 + e33, K
d
R = λd + 2

3
Gd is the drained bulk modulus, α = 1 −Kd

R/Km

is the Biot-Willis parameter (Biot and Willis, 1957) with Km being the bulk modulus of
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the solid minerals present, and Skempton’s pore-pressure buildup parameter B (Skempton,

1954) is given by

B =
1

1 +Kp(1/Kf − 1/Km)
. (6)

New parameters appearing in (6) are the bulk modulus of the pore fluid Kf and the pore

modulus K−1
p = α/φKd

R where φ is the porosity. The expressions for α and B can be general-

ized slightly by supposing that the solid frame is composed of more than one constituent, in

which case the Km appearing in the definition of α is replaced by Ks and the Km appearing

explicitly in (6) is replaced by Kφ [see Brown and Korringa (1975), Rice and Cleary (1976),

Berryman and Milton (1991), Berryman and Wang (1995)]. This is an important additional

complication (Berge and Berryman, 1995). We choose not to pursue this issue further here.

Comparing (1) and (5), we find for an isotropic system that

β =
α

3Kd
R

(7)

and

γ =
α

BKd
R

. (8)

RELATIONS FOR ANISOTROPY IN POROELASTIC MATERIALS

Gassmann (1951), Brown and Korringa (1975), and many others have considered the

problem of obtaining effective constants for anisotropic poroelastic materials when the pore

fluid is confined within the pores. The confinement condition amounts to a constraint that

the increment of fluid content ζ = 0, while the external loading σ is changed and the

pore-fluid pressure pf is allowed to equilibrate.

To recall an elementary derivation of the Gassmann equation for anisotropic materials,

we consider the anisotropic generalization of (1), which is















e11

e22

e33

−ζ















=















s11 s12 s13 −β1

s12 s22 s23 −β2

s13 s23 s33 −β3

−β1 −β2 −β3 γ





























σ11

σ22

σ33

−pf















. (9)

The three simple (uncoupled) shear contributions for hexagonal, tetragonal, orthorhombic,

and/or cubic symmetries have been immediately excluded from consideration, since they can
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easily be seen not to interact mechanically with the fluid effects. Since this form includes only

orthorhombic, tetragonal, cubic, hexagonal, and all isotropic systems, it is not completely

general. But our goal is an analytical level of understanding, rather than great generality.

We are also assuming that the material axes are aligned with the spatial axes. This latter

assumption is not significant however for the derivation that follows. Such an assumption

is important when properties of laminated materials having arbitrary orientation relative to

the spatial axes need to be considered, but this issue is not studied here.

If the fluid is confined (or undrained on the time scales of interest to applications in high

frequency wave propagation), then ζ ≡ 0 in (9) and pf becomes a linear function of σ11, σ22,

σ33. Eliminating pf from the resulting equations, we obtain the general expression for the

strain dependence on external stress under such undrained conditions:










e11

e22

e33











=





















s11 s12 s13

s12 s22 s23

s13 s23 s33











− γ−1











β1

β2

β3











(

β1 β2 β3

)





















σ11

σ22

σ33











≡











su
11 s

u
12 s

u
13

su
12 s

u
22 s

u
23

su
13 s

u
23 s

u
33





















σ11

σ22

σ33











. (10)

The compliances sij ’s are the fluid-drained constants, while the compliances su
ij ’s are the

fluid-undrained (or fluid-confined) constants.

The fundamental result (10) was obtained earlier by both Gassmann (1951) and Brown

and Korringa (1975), and may be written simply as

su
ij = sij −

βiβj

γ
, for i, j = 1, 2, 3. (11)

Eq. (11) is the anisotropic generalization of the well-known Gassmann equation for isotropic,

microhomogeneous porous media.

EIGENVECTORS FOR HEXAGONAL, TETRAGONAL, AND CUBIC

SYMMETRY

The 3 × 3 system (10) can be analyzed most easily in terms of its eigenfunctions and

eigenvalues. However, such very general results do not necessarily provide the kind of insight

into the poromechanics we are trying to gain. So instead of proceeding in this direction,
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we will now restrict attention to three common types of anisotropy: hexagonal (transverse

isotropy), tetragonal, and cubic symmetry. Transverse isotropy is relevant in particular to

many layered earth materials and also industrial systems. But all three types of symmetry

are useful to us here because we can immediately eliminate one of the eigenvectors from

consideration. Furthermore, the three remaining shear modes (equations not shown here) are

uncoupled – both from each other and from the part of the poroelastic tensor we will study

in most detail. [We could also study trigonal symmetry using a very analogous methods,

but instead choose to avoid this here as trigonal systems have two types of coupling that

tend to complicate the analysis somewhat.]

The three types of crystal symmetry considered here are:

(a) Hexagonal symmetry: requiring s11 = s22, s13 = s23, s44 = s55, and s66 is coupled to

s11 and s12.

(b) Tetragonal symmetry [classes 4mm, 4̄2m, 4/mmm – see Nye (1957) for details]:

requiring s11 = s22, s13 = s23, s44 = s55, and (unlike hexagonal symmetry) s66 is not coupled

to s11 and s12.

(c) Cubic symmetry (actually a special case of tetragonal symmetry): requiring s11 =

s22 = s33, s12 = s13 = s23, and s44 = s55 = s66. Again, s66 is not coupled to s11 and s12.

For all of these crystal symmetries, we assume that the poroelastic coupling coefficients

satisfy β1 = β2, and β3 can be independent of the other two coefficients.

Three mutually orthogonal (but unnormalized) vectors of interest are:

v1 =











1

1

1











, v2 =











1

−1

0











, v3 =











1

1

−2











. (12)

Treating these vectors as stresses, the first corresponds to a simple hydrostatic stress, the

second to a planar shear stress, and the third to a uniaxial shear stress (i.e., the shear

component of a pure uniaxial principal stress applied along the z-axis — which is also the

same as the symmetry axis for a layered system). Thus, it is apparent that — for the crystal

symmetries considered — the planar shear stress v2 is an eigenvector of the system, and,

furthermore, it results in no contribution from the pore fluid. Therefore, this vector will be

of no interest here, and the system for all three crystal symmetries can then be reduced to

2 × 2.
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Because the tetragonal symmetry considered here has the hexagonal and cubic symmetries

as special cases, we will phrase the following discussion in terms of tetragonal symmetry until

we need to discuss detailed results at the end of the calculation.

Compliance Formulation

If we define the effective compliance matrix for the system as S∗ having the matrix

elements given in (11), then the bulk modulus for this system is defined in terms of v1 by

1

Ku
R

= vT
1 S

uv1 =
1

Kd
R

− γ−1 (2β1 + β3)
2 =

1 − αB

Kd
R

, (13)

where the T superscript indicates the transpose, and 1/Kd
R ≡

∑3

i,j=1 sij . The result (13) is

usually quoted as Gassmann’s equation for the bulk modulus of an undrained (or confined

fluid) anisotropic porous system. Also, note that in general

1

γ

3
∑

i=1

βi =
2β1 + β3

γ
= B, (14)

where 2β1 +β3 = α/Kd
R. The vector v1 is not an eigenvector of this system, but nevertheless

plays a fundamental role in the poromechanics.

The true eigenvectors of the subproblem of interest (i.e., in the space orthogonal to

the four pure shear eigenvectors already discussed and eliminated) are necessarily linear

combinations of v1 and v3. We can construct the relevant contracted operator for the 2 × 2

subsystem by considering:




vT
1

vT
3



Su
(

v1 v3

)

≡





9Au
11 18Au

13

18Au
13 36Au

33



 (15)

(in all cases u superscripts and subscripts indicate that the undrained pore-fluid effects are

included) and the reduced matrix

Σu = Au
11v1v

T
1 + Au

13(v1v
T
3 + v3v

T
1 ) + Au

33v3v
T
3 , (16)

where

Au
11 = [2(su

11 + su
12 + 2su

13) + su
33]/9 =

1

9Ku
R

,

Au
13 = (su

11 + su
12 − su

13 − su
33)/9, (17)

Au
33 = (su

11 + su
12 − 4su

13 + 2su
33)/18 =

1

12Gr
u

.
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We now proceed to interpret these constants in terms of their contributions to the shear

modulus dependence on fluid content.

First we remark that

3Au
11 =

1

3Ku
R

, (18)

where Ku
R is the undrained (or Gassmann) bulk modulus for the system in (13). Therefore,

Au
11 is proportional to the undrained bulk compliance of this system. The other two distinct

matrix elements cannot be given quite such simple interpretations. However, for the drained

moduli, we have a general rule [see Appendix B and also Berryman (2004a)] stating that

6Kd
RG

v
d = 6Kd

VG
r
d =

[

Λd
+Λd

−

]−1
, (19)

where the drained eigenvalues are

Λd
±

= 3

[

Ad
33 + Ad

11/2 ±
√

(Ad
33 − Ad

11/2)2 + 2(Ad
13)

2

]

. (20)

The drained Voigt bulk modulus is determined by

Kd
V = [2(c11 + c12 + 2c13) + c33]/9 = Ad

11. (21)

The drained Voigt uniaxial shear modulus is determined by

Gv
d = [c11 + c12 − 4c13 + 2c33]/6, (22)

and the drained Reuss uniaxial shear modulus is given similarly by

1

2Gr
d

= [s11 + s12 − 4s13 + 2s33]/3 = 3Ad
33, (23)

Exactly analogous expressions hold for all the undrained coefficients, so we also have

6Ku
RG

v
u = 6Ku

VG
r
u =

[

Λu
+Λu

−

]−1
, (24)

and all the definitions in (20)-(23) are then replaced by those with undrained quantities on

the right hand side.

The eigenvectors f(θ) for the undrained problem (i.e., for the reduced operator Σ∗ for

the pertinent s× 2 system) necessarily take the form

f(θ) =
cos θ√

3
v1 +

sin θ√
6
v3, (25)
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with two solutions for the rotation angle: θ− and θ+ = θ− + π
2
, guaranteeing that the two

solutions (the eigenvectors) are orthogonal. It is easily seen that the eigenvalues are given

by

Λu
±

= 3
[

Au
33 + Au

11/2 ±
√

(Au
33 − Au

11/2)2 + 2(Au
13)

2

]

(26)

so that

Λu
+Λu

−
= 18

[

Au
11A

u
33 − (Au

13)
2
]

. (27)

The rotation angles are determined by

tan θu
±

=
Λu

±
/3 − Au

11√
2Au

13

=

[

Au
33 − Au

11/2 ±
√

(Au
33 − Au

11/2)2 + 2(Au
13)

2

]

/
√

2Au
13. (28)

One part of the rotation angle is due to the drained (fluid free) “hard anisotropic” nature

of the rock frame material. We will call this part θd. The remainder is due to the presence

of the fluid in the pores, and we will call this part δθ ≡ θu − θd for the “soft anisotropy.”

Using a standard formula for tangents, we have

δθ± = tan−1

[

tan θu
±
− tan θd

±

1 + tan θu
± tan θd

±

]

. (29)

Furthermore, formulas for θd
±

are readily found from (28) by taking the poroelastic parameter

γ → ∞ (corresponding to air saturation of the pores).

Since

tan θu
+ · tan θu

−
= −1, (30)

it is sufficient to consider just one of the signs in front of the radical in (28). The most

convenient choice for analytical purposes turns out to be the minus sign (which corresponds

to the eigenvector with the larger component of pure compression). Furthermore, it is also

clear from the form of (28) that often the behavior of most interest to us here occurs for

cases when Au
13 6= 0 (since otherwise v1 and v3 are both eigenvectors and the shear modulus

is uncoupled to the fluid effects).

To simplify the analysis we note that, at least for purposes of modeling, anisotropy of

the compliances sij and the poroelastic coefficients βi can be treated independently. We
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assume that anisotropy displayed in the sij’s corresponds mostly to the anisotropy in the

solid elastic components of the system, while anisotropy in the βi’s corresponds mostly to

anisotropy in the shapes and spatial distribution of the porosity. Thus, contributions to

the anisotropy in the sij’s is the “hard anisotropy,” and constributions to the anisotropy in

the βi’s is the “soft anisotropy.” Both types of anisotropy are considered in the following

analysis.

In the limit of a nearly isotropic solid frame (so the “hard anisotropy” vanishes and thus

we will also call this the “quasi-isotropic” limit), it is not hard to see that

Au
33 =

1

12Gr
u

=
1

12Gr
d

− (β1 − β3)
2

9γ
, (31)

where Gr
d is the drained (Reuss) uniaxial shear modulus of the anisotropic solid frame.

Similarly, the remaining coefficient

Au
13 =

(s11 + s12 − s13 − s33)

9
− (β1 − β3)B

9
, (32)

where we used (14) to simplify the expression. In the isotropic limit, all the solid contribu-

tions would cancel in this formula.

Expanding the square root in (26), we also have

Λu
+ = 6Au

33 + ∆ and Λu
−

= 3Au
11 − ∆, (33)

where ∆ is defined consistently by either of the two preceeding expressions or by 2∆ ≡
Λu

+ − Λu
−

+ 3A11 − 6A33.

Stiffness Formulation

The dual to the problem just studied replaces compliances everywhere with stiffnesses,

and then proceeds as before. Equations (15)–(18) are replaced by





vT
1

vT
3



Cu
(

v1 v3

)

≡





9Du
11 18Du

13

18Du
13 36Du

33



 (34)

(in all cases the u superscripts and subscripts indicate that the pore-fluid effects are included)

and the reduced matrix

(Σu)−1 = Du
11v1v

T
1 +Du

13(v1v
T
3 + v3v

T
1 ) +Du

33v3v
T
3 , (35)
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where

Du
11 = [2(cu11 + cu12 + 2cu13) + cu33]/9 = Ku

V ,

Du
13 = (cu11 + cu12 − cu13 − cu33)/9, (36)

Du
33 = (cu11 + cu12 − 4cu13 + 2cu33)/18 = Gv

u/3.

It is a straightforward exercise to check that the two reduced problems are in fact inverses

of each other. We will not repeat this analysis here. The main difference in the details is

that the expressions for the D’s in terms of the β’s are rather more complicated than those

for the compliance version, which is also why we choose to concentrate on the compliance

formulation instead.

To illustrate the complications that arise, consider the bulk modulus upper bound Ku
V ,

which can be written in terms of compliances as

1

1/9Ku
V − su

13

=
2

su
11 + su

12 − 2su
13

+
1

su
33 − su

13

, (37)

and which in turn can be rearranged into the form

9Ku
V =

su
11 + su

12 − 4su
13 + 2su

33

(su
11 + su

12)s
u
33 − 2(su

13)
2

=
3/Gr

u

2Λu
+Λu

−

(38)

Eq. (38) is perhaps the simplest expression possible for Ku
V in general. Even so, it is clearly

much more complicated than (13) for Ku
R, and especially so when (11) is used to substitute

for the su
ij values.

ESTIMATES OF UNDRAINED AND EFFECTIVE OVERALL SHEAR

MODULI

Four shear moduli are easily defined for the anisotropic system under study. Further-

more, G2 = (c11 − c12)/2, G3 = c44, G4 = c55, and G5 = c66. These moduli are all related

to the four shear eigenvectors of the systems, and these do not couple to the pore-fluid me-

chanics. But, the eigenvectors in the reduced 2×2 system studied here are usually mixed in

character, being quasi-compressional or quasi-shear modes. It is therefore somewhat prob-

lematic to find a proper definition for the fifth shear modulus. The author has analyzed this

problem previously (Berryman, 2004b), and concluded that a sensible (though approximate)

definition can be made using G1 = Gv
u. There are several different ways of arriving at the

13



same result, but for the present analysis the most useful of these is to express Gv
u in terms

of the product Λu
+Λu

−
(the eigenvalue product, which is also the determinant of the 2 × 2

compliance system). The result [see Berryman (2004a) and a new derivation provided here

in Appendix B for more details] is

1

3Ku
R

· 1

2Gv
u

≡ Λu
+Λu

−
= 18

[

Au
11A

u
33 − (Au

13)
2
]

. (39)

And, since Au
11 = 1/9Ku

R, we have

12
[

Au
33 − (Au

13)
2/Au

11

]

=
1

Gv
u

=
1

Gr
u

− 4

3
Ku

R (su
11 + su

12 − su
13 − su

33)
2 . (40)

To obtain one estimate for an isotropic average overall undrained shear modulus, we next

take the arithmetic mean of the five shear compliances. Prior work (Berryman, 2004a) has

shown that the best choice of the undrained uniaxial shear compliance is Gu
1 = Gv

u, while we

have no flexibility for the other four values, being determined as they are by the eigenvalues.

So we have:

1

G∗
u

≡ 1

5

5
∑

i=1

1

Gu
i

, (41)

and a similar expression for the drained estimate G∗

d.

Next, define

τd ≡ s11 + s12 − s13 − s33, (42)

as well as the corresponding undrained quantity. Both of the these quantities will be needed

in the formulas that follow. Combining these definitions and results for the difference be-

tween overall drained and undrained shear compliance gives:

1

G∗

d

− 1

G∗
u

=
1

5

(

1

Gd
1

− 1

Gu
1

)

=
1

5

(

1

Gv
d

− 1

Gv
u

)

=

4

15

(Kd
Rτd + β ′

3 − β ′

1)
2

1 − αB

αB

Kd
R

=
4

15

(Kd
Rτd + β ′

3 − β ′

1)
2

1 − αB

[

1

Kd
R

− 1

Ku
R

]

. (43)

The β ′s appearing here are defined by β ′

i = βiK
d
R/α. The final equality is presented to

emphasize the similarity of the present results to those of Mavko and Jizba (1991) and

Berryman et al. (2002b). In fact, by setting β ′

1 = 0, β ′

3 = 1 (maximal anisotropy), B = 1

(liquid saturation), τd = 0 (hard isotropy), and α ' 0 (very low porosity cracks) recovers

14



the expressions of Mavko and Jizba (1991) for the case of a very dilute system of flat cracks

in an isotropic background medium:

1

G∗

d

− 1

G∗
u

=
4

15

[

1

Kd
R

− 1

Ku
R

]

. (44)

Note that (41) is just the Reuss average (lower bound) of the shear modulus. Also

note that the definition (40) of Gv
u is actually based on the Voigt average. In terms of

mathematical rigor, the result (43) therefore cannot be considered rigorous; it is neither an

upper nor a lower bound. The justification for the formula comes not from absolute rigor,

but instead from the observation (Berryman, 2004a) that Gv
u is in fact a very close estimate

of the energy per unit volume in the fifth shear mode and from the knowledge that the

Reuss average for compressional modulus tends to be much closer to observed results than

the Voigt average does for many composite systems. So, for these reasons, the result (43)

should be viewed, not as a rigorous formula (it is not), but it is nevertheless a good estimate

of the undrained shear modulus.

The following section will present two examples of the use of these ideas for sample

materials. After a brief discussion of these results, we will then present a more rigorous (but

perhaps less insightful) approach and compare those results again to the ones presented in

this section.
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Table 1. Elastic and poroelastic parameters of the sandstone sample considered in the

text. Bulk and shear moduli of the grains Km and Gm, bulk and shear moduli of the

drained porous frame Kd
R and Gd, the uniaxial and overall undrained shear moduli Gv

u and

G∗

u, and the Biot-Willis parameter α = 1 −Kd
R/Km. The porosity is φ.

Elastic and Poroelastic Schuler-Cotton Valley

Parameters Sandstone

Gm (GPa) 36.7

G∗

u (GPa) 17.7

Gd (GPa) 15.7

Gv
u (GPa) 35.8

Km (GPa) 41.8

Kd
R (GPa) 13.1

α 0.687

φ 0.033
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SOME EXAMPLES AND DISCUSSION OF ESTIMATES

It is clear from (33) that fluid effects in ∆ cannot increase the overall compliance eigen-

values simultaneously for both the quasi-bulk and the quasi-shear modes. Rather, if one

increases, then the other must decrease. Furthermore, it is certainly always true that the

presence of pore liquid either has no effect or else strengthens (i.e., stiffens) the porous

medium in compression. But this effect on the bulk modulus has been at least partially ac-

counted for in Au
11 = 1/9Ku

R through the original contribution derived by Gassmann (1951).

The contribution of ∆ to compliance cannot be so large as to offset the liquid effects on the

undrained bulk modulus.

Examples of estimates

To clarify the situation, we show some examples in Figures 1–4. The details of the

analysis that produces these figures are summarized in Appendix A. The main point is that,

for the compliance version of the analysis, the contours of constant energy are ellipses when

the vector f in (25) is interpreted as a stress. Analogously, when the vector is treated as

a strain, the contours of constant energy are ellipses for the dual (or stiffness) formulation.

If we choose to think of these figures as diagrams in the complex plane, then we note that

— while circles and lines transform to circles and lines when transforming back and forth

between these two planes — the shapes of ellipses are not preserved (except, of course, in the

special case – which is precisely that of isotropy – when the ellipses degenerate to circles).

Eigenvectors are determined by the directions in which the points of contact of these two

curves lie (indicated by red circles).

Figures 1 and 2 present an example based on a glassy material. Typical values for the

bulk and shear moduli of glass were used: Km = 46.3 GPa and Gm = 30.5 GPa, respectively.

The value of the Biot-Willis coefficient was arbitrarily chosen as α = 0.6, so Kd
R = 18.52

GPa. Taking Poisson’s ratio as νd = 0.2, we have Gd = 13.89 GPa. Skempton’s coefficient

was chosen for simplicity to be B ≡ 1 in this and all the other examples as well. (This choice

is extreme because it implies that Ku
R = Km. But, since our interest here is in analysis of

the undrained shear modulus, the study of this limit is particularly useful to us.) The most

anisotropic choices of β1 and β3 were used that would not produce absurd (negative) values

of the diagonal coefficients for either su
ij or cuij , and that also would not produce G∗

u > Gm.
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For glass, these values were found to be β1 = 0.15α/Kd
R and β3 = 0.70α/Kd

R. The value of

the energy used for normalization was U = 900.0 GPa. Computed values for the effective

and undrained shear moduli were Gv
u = 25.43 GPa and G∗

u = 15.28 GPa.

The second example considered is Schuler-Cotton Valley sandstone. Values used for the

moduli of samples are taken from results contained in Berryman (2004b), wherein certain

laboratory data were fitted using an elastic differential effective medium scheme. These

results are summarized in Table 1.

Figures 3 and 4 present results for Schuler-Cotton Valley sandstone. Laboratory data

on this material were also presented by Murphy (1982). The values chosen for β1 and β3

were β1 = 0.20α/Kd
R and β3 = 0.60α/Kd

R. The value of the energy per unit volume used for

normalization was U ' 900.0 GPa. Computed values for the effective and undrained shear

moduli were Gv
u = 35.8 GPa and G∗

u = 17.7 GPa.

Discussion of estimates

We can compare the results obtained here with results obtained for the same porous

materials using differential effective medium theory to fit data. Two characteristics concern

us: (a) comparisons between the values chosen in our examples for the anisotropic β ′s and

the best fitting crack aspect ratios found in Berryman (2004b), and (b) comparisons between

the magnitudes of changes in the overall shear moduli from their drained to undrained values.

The preferred crack aspect ratio found for Schuler-Cotton Valley sandstone in Berry-

man (2004b) was 0.015. We found that (β ′

1, β
′

3) for Schuler-Cotton Valley sandstone was

(0.20,0.60). Observed increase in shear modulus of the measured laboratory data for Schuler-

Cotton Valley sandstone was about 10%. As seen in Table 1, the magnitude of the change

predicted here is also about 10%. We also know from related work in Berryman (2004c)

that the maximum undrained effect on shear for any heterogeneous porous medium is a

20% increase. So values observed here (and in other work) of about 10% can be considered

typical. Thus, agreement is good both qualitatively and semi-quantitatively in all cases.

The theory presented correctly estimates the observed magnitudes of these shear modulus

enhancements due to pore-fluid effects.
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FIG. 1: For a glassy porous material having bulk modulus Kdr = 18.52 GPa and shear modulus

Gdr = 13.89 GPa, the locus of points z = Reiθ [see equation (44)] having constant energy U = 900

GPa, when the linear combination of pure compression and pure uniaxial shear is interpreted

as strain field applied to the stiffness matrix (solid black line). The plot is in the complex z-

plane, with the inverse of the corresponding expression for the compliance energy superposed for

comparison (dashed blue line). Red circles at the two points of intersection correspond to the two

eigenvalues/eigenvectors of the system of equations. The ellipse (solid black line) in this plane

corresponds to the more complex curve in Figure 2. The two rectangles illustrate the product

formula (19) derived and used in the text. The shapes of these rectangles are very similar, but not

identical; however, their areas are identical.

BOUNDS AND SELF-CONSISTENT ESTIMATES

Rigorous methods such as the Hashin-Shtrikman bounds (Hashin and Shitrikman, 1962)

exist for constraining the behavior of an overall isotropic composite medium whose con-

stituents are anisotropic grains. For the types of crystal symmetry considered here (hexag-

onal, tetragonal, and cubic), Peselnick and Meister (1965), Meister and Peselnick (1966),

and Watt and Peselnick (1980) have developed nontrivial expressions required to implement

these bounds. Also, it has been shown recently by Berryman (2005b) that these methods can

also be used to determine self-consistent estimates for these same types of composite media.

For our present application, the main complication comes from the presence of pore-fluids

and the fact that there are two calculations that are pertinent: one for drained and one for

undrained pore fluid. As we have seen already in this paper, these types of complications are

not difficult to incorporate into the analysis, since they just provide shifts from the drained

compliances to the undrained compliances, as the pore-liquid tends to stiffen the porous

medium in both compression and shear, when compared to the case with gas-filled pores.
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FIG. 2: Same parameters as Figure 1, but the linear combination of pure compression and pure

uniaxial shear is interpreted as a stress field and is applied to the compliance matrix (dashed blue

line). The plot is again in the complex z-plane, with the inverse of the corresponding expression for

the stiffness energy superposed for comparison (solid black line). Red circles at the two points of

intersection correspond to the two eigenvalues/eigenvectors of the system of equations. The ellipse

(dashed blue line here) corresponds to the more complex curve in Figure 1.

Bounds on the bulk and shear moduli

Formulas for bounds on the bulk and shear moduli of random polycrystals having grains

with hexagonal, trigonal, or tetragonal symmetries are the main results of Watt and Peselnick

(1980) [based on the earlier work of Peselnick and Meister (1965) and Meister and Peselnick

(1966)]. The author has shown recently that the analytical forms of these results can be

considerably simplified. Derivations have been given elsewhere (Berryman, 2005b) and this

analysis will not be repeated here. The bulk modulus results for all these symmetries are

given in the same format by

K±

PM =
KV (Gr + ζ±)

(Gv + ζ±)
, (45)

where the formula applies to either drained or undrained cases with appropriate factors

used on the right hand side of the equation. The shear moduli Gr and Gv have the same

significance here as they did in (19), (22), (23), (24), etc. The parameters ζ± are defined by

ζ± =
G±

6

(

9K± + 8G±

K± + 2G±

)

. (46)
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FIG. 3: For Schuler-Cotton Valley Sandstone (Murphy, 1982) having bulk modulus Kdr = 13.1

GPa and shear modulus Gdr = 15.7 GPa, the locus of points z = Reiθ [see equation (34***)]

having constant energy U = 900 GPa, when the linear combination of pure compression and pure

uniaxial shear is interpreted as strain field applied to the stiffness matrix (solid black line). The

plot is in the complex z-plane, with the inverse of the corresponding expression for the compliance

energy superposed for comparison (dashed blue line). Red circles at the two points of intersection

correspond to the two eigenvectors of the system of equations. The ellipse (solid black line) in this

plane corresponds to the more complex curve in Figure 2.

In (46), the values of G± and K± are those defined algorithmically by

K± =
KV (Gr −G±)

(Gv −G±)
, (47)

where, for K−,

0 ≤ G− ≤ min(c44, µ3, G
r, c66) (tetragonal), (48)

recalling that µ3 ≡ (c11 − c12)/2. Similarly, for the K+ formula,

max(c44, µ3, G
v, c66) ≤ G+ ≤ ∞ (tetragonal). (49)

The results for shear modulus values of the various symmetry types differ somewhat, but

— to illustrate these results — we will quote only the case of tetragonal symmetry, which is

1

G±

tetr + ζ±
=

1

5

[

1 − π±(KV −K±)

Gv + ζ± + δ±(KV −K±)
+

1

µ3 + ζ±
+

2

c44 + ζ±
+

1

c66 + ζ±

]

. (50)

The factor ζ± is given as before by (46). And, the factors π± and δ± are determined by

π± =
−1

K± + 4G±/3
, and δ± =

5G±/2

K± + 2G±

. (51)
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FIG. 4: Same parameters as Figure 1, but the linear combination of pure compression and pure

uniaxial shear is interpreted as a stress field and is applied to the compliance matrix (dashed blue

line). The plot is again in the complex z-plane, with the inverse of the corresponding expression

for the stiffness energy superposed for comparison (solid black line). Red circles at the two points

of intersection correspond to the two eigenvectors of the system of equations. The ellipse (dashed

blue line here) corresponds to the more complex curve in Figure 1.

Self-consistent estimates of bulk and shear moduli

The self-consistent estimates for bulk modulus can be obtained by the straightforward

operational method of simply replacing the parameters K±, G±, and ζ± by the (to be

determined) self-consistent values K∗, G∗, and ζ∗, respectively. So the resulting formula is

K∗ =
KV (Gr + ζ∗)

(Gv + ζ∗)
=

(GvKR + ζ∗KV )

(Gv + ζ∗)
, (52)

where

ζ∗ =
G∗

6

(

9K∗ + 8G∗

K∗ + 2G∗

)

. (53)

For porous media, KV , Gr, Gv, and KR are all evaluated either for drained or for undrained

values depending on the application.

To arrive at the correct formulation of the self-consistent shear modulus, we must be

careful to apply a correction related to the fact that the bounds are actually defined along

a specific trajectory (47) in the (G±, K±)-plane. When we are not on this curve, there is

a factor in the denominator of the first term on the right hand side that cancels the term
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proportional to δ in (50). The final result for tetragonal symmetry is then given by:

1

G∗
tetr + ζ∗

=
1

5

[

1 − π∗(KV −K∗)

Gv
eff + ζ∗

+
1

µ3 + ζ∗
+

2

c44 + ζ∗
+

1

c66 + ζ∗

]

. (54)

The factor π∗ is

π∗ =
−1

K∗ + 4G∗/3
. (55)

Very similar forms are also available for self-consistent shear modulus in the hexagonal,

trigonal, and cubic cases. But, we will not discuss these results here.

Table 2. Elastic stiffness constants of tetragonal indium, mercurous chloride (Hg2Cl2),

and urea (CO(NH2)2).

In Hg2Cl2 CO(NH2)2

c11 (GPa) 45.2 18.93 21.7

c12 (GPa) 40.0 17.19 8.9

c13 (GPa) 41.2 15.63 24.0

c33 (GPa) 44.9 80.37 53.2

c44 (GPa) 6.52 8.46 6.3

c66 (GPa) 12.00 12.25 0.45

µ3 (GPa) 2.60 0.87 6.40

Gv (GPa) 1.70 22.39 6.83

Examples of bounds and various estimates

We can use the formulas (45) and (50) to bound the bulk and shear moduli of pure

random polycrystals (having no porosity). The corresponding self-consistent estimates (52)

and (54) can then be taken as reasonable estimators (K∗

m and µ∗

m) of the isotropic values

of the constants for the pure polycrystal. We can then continue this process and produce

bounds and estimates for the porous random polycrystal, in this case using well-known

formulas for both bounds and estimates. If φ is porosity (volume fraction of void space),

then the self-consistent drained constants are

1

Kd
SC + 4Gd

SC/3
=

1 − φ

K∗
m + 4Gd

SC/3
+

φ

4Gd
SC/3

(56)
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FIG. 5: Undrained bulk modulus bounds and self-consistent estimates for the porous indium, as a

function of porosity. Input stiffnesses are listed in Table 2.

and
1

Gd
SC + ζd

SC

=
1 − φ

G∗
m + ζd

SC

+
φ

ζd
SC

, (57)

while the self-consistent undrained constants are

1

Ku
SC + 4Gu

SC/3
=

1 − φ

K∗
m + 4Gu

SC/3
+

φ

Kf + 4Gu
SC/3

(58)

and
1

Gu
SC + ζu

SC

=
1 − φ

G∗
m + ζu

SC

+
φ

ζu
SC

. (59)

In both cases, ζSC = (GSC/6)(9KSC + 8GSC)/(KSC + 2GSC).

Hashin-Shtrikman lower bounds for drained constants for both bulk and shear modulus

are exactly zero for any finite value of porosity, which is also why the self-consistent estimates

are of such importance for porous media. Hashin-Shtrikman upper bounds for drained

constants are:
1

Kd+
HS + 4G+/3

=
1 − φ

K∗
m + 4G+/3

+
φ

4G+/3
(60)

and
1

Gd+
HS + ζ+

=
1 − φ

G∗
m + ζ+

+
φ

ζ+
, (61)

where G+ = max(c44, µ3, G
v, c66) is the largest shear modulus in the system, and ζ+ is

computed using G+ and max(Kf , K
∗

m), which will usually be equal to K∗

m.

Hashin-Shtrikman upper and lower bounds for undrained constants are:

1

Ku±
HS + 4G±/3

=
1 − φ

K∗
m + 4G±/3

+
φ

Kf + 4G±/3
(62)
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FIG. 6: Undrained shear modulus bounds, self-consistent estimates, and three examples of the

analytical estimate from Equation (43) for the porous indium, as a function of porosity.

and
1

Gu±
HS + ζ±

=
1 − φ

G∗
m + ζ±

+
φ

ζ±
, (63)

where G+ = max(c44, µ3, G
v, c66) and G− = 0 are, respectively, the largest and smallest

shear moduli in the system. The parameter ζ+ is computed using G+ and max(Kf , K
∗

m),

while ζ− = 0 always holds. It follows then that the Hashin-Shtrikman lower bound on

undrained shear modulus also vanishes identically for any finite porosity, but the lower

bound on undrained bulk modulus does not necessarily vanish as long as Kf 6= 0.

Finally, we also have analytical estimates to consider from (43). First note that we can

express Skempton’s coefficient B in terms of other quantities that will be computed (or

measured), so that along with α = 1 −Kd/Km, we also have

B =
1 −Kd/Ku

α
. (64)

Therefore, the examples that follow are not restricted to the extreme case B = 1. Now, to

simplify the expression in (43) somewhat, it is useful to note that

1 +Kd
Rτd =

c33 − c13
2Gv

d

. (65)

This expression is particularly relevant when β ′

3 = 1 and β ′

1 = 0 (recalling that 2β ′

1+β ′

3 = 1).

Note that Kd
Rτd +β ′

3−β ′

1 = (1+Kd
Rτd)−(1+β ′

1−β ′

3). Then, three cases are of most interest:

(a) β ′

3 = 1 (maximal effect of the fluid along the axis of grain symmetry), (b) β ′

1 = β ′

3 = 1/3

(soft isotropy), and (c) β ′

1 = 1/2 (maximal effect of the fluid off the grain symmetry axis).
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FIG. 7: Undrained bulk modulus bounds and self-consistent estimates for porous mercurous chlo-

ride (Hg2Cl2), as a function of porosity. Input stiffnesses are listed in Table 2.

Examples are presented for random polycrystals of porous indium, mercurous chloride

(Hg2Cl2), and urea (CO(NH2)2). Table 2 presents the input elastic constants. Figures 5-10

display the results. For each case a pair of figures shows the results first for bulk modulus

and then for shear modulus. Four curves for bulk modulus include two rigorous bounds —

both for the undrained constants, and also two self-consistent curves — one for the drained

constant and the other for the undrained constant. In each case the drained bulk modulus

estimate lies below the undrained bulk modulus estimate and also below the undrained upper

bound, as would be expected. perhaps surprisingly the drained estimate is however above

the lower bound on the undrained bulk modulus in all three figures. The reason for this is

that the lower bound for the undrained case is computed using the lowest shear modulus

in the fluid-saturated system (which is zero), whereas the self-consistent estimate uses the

self-consistent estimate of the shear modulus, which is always substantially above zero as is

seen in the Figures for shear modulus. So there is no contradiction here, but there is some

incompatibility between the assumptions of the various calculations and so care should be

used when interpreting the results.

The most important results are those for the shear moduli shown in Figures 6, 8, and

10. The lower bounds for both drained and undrained shear modulus are zero at finite

porosity, and so are not plotted. The Hashin-Shtrikman upper bound is always an upper

bound on the self-consistent estimates, both undrained and drained. The drained estimates

are always lower than the undrained as expected— although, in all three of these examples,
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FIG. 8: Undrained shear modulus bounds, self-consistent estimates, and three examples of the

analytical estimate from Equation (43) for porous mercurous chloride (Hg2Cl2), as a function of

porosity.

the differences are not great.

The remaining estimates are the three special cases obtained from (43). Gu
1 corresponds

to β ′

3 = 1 (maximal axial effect of the fluid). Gu
2 corresponds to β ′

1 = β ′

3 = 1/3, which is

soft isotropy. And Gu
3 corresponds to β ′

1 = 1/2 (minimal axial effect of the fluid). It is

clear that Gu
1 should always be give the largest estimate of these three, and this is observed

in all three examples. The relationship between the remaining to cases is not so simple,

as it depends not only on the values of the β ′s, but also on the hard anisotropy. If there

is no hard anisotropy (or very little), then Gu
2 will correspond to a completely (or almost

totally) isotropic porous material, and so Gassmann’s results will hold. In this very special

case, Gu
2 should take the same value as G∗

SC , assuming that the self-consistent calculation is

compatible with the other estimate. We see in Figure 6 for indium this is essentially what

happens. Then, the value of Gu
3 must be higher than Gu

2 , but not as high as Gu
1 . This

behavior is also observed in Figure 6. The results show in particular that the two types

of estimators (G∗

SC and the Gu
i ’s for i = 1, 2, 3) are remarkably consistent, even though

they have been obtained using very different arguments. In contrast, mercurous chloride

shows a different behavior in Figure 8, having Gu
2 > Gu

3 . This means that the hard and soft

anisotropy are effectively canceling each other in the overall result for this case.

Finally, urea is the most compliant of the crystals considered and, therefore, shows the

greatest effect of the stiffening due to the pore fluid in Figure 10. Here we find again (as
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FIG. 9: Undrained bulk modulus bounds and self-consistent estimates for porous urea (CO(NH2)2),

as a function of porosity. Input stiffnesses are listed in Table 2.

in Figure 8) that Gu
1 > Gu

2 > Gu
3 . But, in this case, the stiffening effect is so strong for

maximal axial effect of the fluid that Gu
1 > Gu+

HS. The author has no immediate explanation

for this effect. But it should be pointed out that in polycrystalline materials, it is possible

for some special microgeometries that the overall stiffness can approach the Voigt average,

and therefore exceed the Hashin-Shtrikman bound (Milton, 2002). It is not obvious that

this is the correct explanation for the result observed, but it is one possible source of this

apparent discrepancy.

SUMMARY AND CONCLUSIONS

Several different approaches to understanding pore-fluid enhanced shear modulus have

been considered. The first result obtained was the physically motivated estimator in (43).

This result has several advantages, including the ability to treat hard anisotropy and/or soft

anisotropy either separately or simultaneously. The second type of estimator introduced was

the self-consistent estimator (54), closely related to the rigorous (Hashin-Shtrikman-type)

bounds for nonporous random polycrystals. These estimators were then used as input to

another type of self-consistent estimator in order to generate both drained and undrained

constants (57) and (59) for porous polycrystals. Finally, estimators and bounds were com-

puted for three tetragonal polycrystals in order to compare and contrast these methods.

We found excellent agreement between the first estimates from (43) and the self-consistent

estimates (57) and (59). This agreement tends to cross-validate both methods used, since
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analytical estimate from Equation (43) for porous urea (CO(NH2)2), as a function of porosity.

they are based on conceptually independent theoretical perspectives.

In porous media, under many circumstances, overall shear modulus depends on pore-

liquid mechanics. This dependence arises in any of the anisotropic media having the crystal

symmetries considered (hexagonal, tetragonal, cubic), and others as well. The results demon-

strate how compression-to-shear coupling enters the analysis for some anisotropic materials,

and also how this coupling leads to the observed overall shear dependence on liquids trapped

in pores.

These effects need not always be large. However, the effects can be fairly substantial —

on the order of a 10% to 20% increase in the overall shear modulus — in cracked or fractured

materials, when these pores are liquid-filled. Anisotropy and liquid stiffening effects both

come strongly into play, as illustrated in Figures 1–4. In particular, if β1 ' β3, then soft

anisotropy does not make a significant contribution. But, if either β1 << β3 or β1 >> β3,

then the contribution can be significant. Analytical results summarized in (43) have also

been compared to bounds and self-consistent effective medium results in Figures 5-10.
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APPENDIX A

The equation of an ellipse centered at the origin whose semi-major and semi-minor axes

are of lengths a and b and whose angle of rotation with respect to the x-axis in the (x, y)-

plane is ψ is given by

(x cosψ + y sinψ)2/a2 + (−x sinψ + y cosψ)2/b2 = 1. (66)

For comparison, when a stress of magnitude r =
√

x2 + y2 is applied to a poroelastic system,

the energy stored in the anisotropic media of interest here [using (16) and (25)] is given by

U(r, θ) = 3r2
[

A11 cos2 θ + 2
√

2A13 cos θ sin θ + 2A33 sin2 θ
]

= R2U(r0, θ), (67)

where in the second equation R ≡ r/r0, and r0 in an arbitrary number (say unity) having the

dimensions of stress (i.e., dimensions of Pa). It is not hard to see that, when U(r, θ) = const,

the two equations (66) and (67) have the same functional form and, therefore, that contours

of constant energy in the complex (z = x+ iy) plane are ellipses. Furthermore, we can solve

for the parameters of the ellipse by setting U = 1 (in arbitrary units for now) in (67) and

then factoring r2 out of both equations. We find that

3A11 =
cos2 ψ

a2
+

sin2 ψ

b2
,

6
√

2A13 = sin 2ψ

(

1

a2
− 1

b2

)

, (68)

6A33 =
sin2 ψ

a2
+

cos2 ψ

b2
.

These three equations can be inverted for the parameters of the ellipse, giving:

1

a2
=

3A11 cos2 ψ − 6A33 sin2 ψ

cos 2ψ
,

1

b2
= −3A11 sin2 ψ − 6A33 cos2 ψ

cos 2ψ
, (69)

tan 2ψ =
2
√

2A13

A11 − 2A33

.

Although contours of constant energy are of some interest, it is probably more useful to

our intuition for the poroelastic application to think instead about contours associated with

applied stresses and strains of unit magnitude, i.e., for r = 1 (in appropriate units) and θ
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varying from 0 to π. We then have the important function U(1, θ). [Note that, when θ varies

instead between π and 2π, we just get a copy of the behavior for θ between 0 and π. The only

difference is that the stress and strain vectors have an overall minus sign relative to those

on the other half-circle. For a linear system, such an overall phase factor of unit magnitude

is irrelevant to the mechanics of the problem.] Then, if we set U(r, θ) = const = R2U(r0, θ)

and plot z = Reiθ in the complex plane, we will have a plot of the ellipse of interest with R

determined analytically by

R =
√

U(r, θ)/U(r0, θ) =
√

const/U(r0, θ). (70)

We call R the magnitude of the normalized stress (i.e., normalized with respect to r0).

The analysis just outlined can then be repeated for the stiffness matrix and applied strain

vectors. The mathematics is completely analogous to the case already discussed, so we will

not repeat it here. Since strain is already a dimensionless quantity, the factor that plays the

same role as r0 above can in this case be chosen to be unity if desired, as the main purpose

of the factor r0 above was to keep track of the dimensions of the stress components.

APPENDIX B: PROOF OF PRODUCT FORMULAS

The product formula (39) was first presented in Berryman (2004a), where two derivations

of this formula were also given. A different derivation is provided here, based on singular

value decomposition of the pertinent reduced (2 × 2) matrix.

Using the definitions of unit trial vector f and reduced (i.e., 2 × 2) compliance matrix

Σ∗ from Eqs. (25) and (16), we can immediately write the eigenvalue (or singular value)

decomposition of the matrix Σ∗ in terms of its eigenvectors and eigenvalues f(θ±) and Λ±.

The result is

Σ∗ = f(θ+)Λ+f
T (θ+) + f(θ−)Λ−f

T (θ−). (71)

The reduced stiffness matrix is just the inverse of Σ∗, and so is represented similarly by

(Σ∗)−1 = f(θ+)Λ−1
+ fT (θ+) + f(θ−)Λ−1

−
fT (θ−). (72)

The curves in Figures 1–4 can then all be parametrized in terms of polar angle θ by consid-

ering the formulas

fT (θ)Σ∗f(θ) = Λ+ cos2(θ − θ+) + Λ− cos2(θ − θ−) (73)
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for compliance, and

fT (θ) (Σ∗)−1 f(θ) = (Λ+)−1 cos2(θ − θ+) + (Λ−)−1 cos2(θ − θ−) (74)

for stiffness.

Then, the undrained bulk modulus of the system Ku = KR is found from (71) to be

(3KR)−1 = vT
1 Σ∗v1 = Λ+ cos2 θ+ + Λ− cos2 θ−. (75)

Similarly, the effective undrained shear modulus Geff by definition is determined from

2Geff = vT
3 (Σ∗)−1 v3 = Λ−1

+ sin2 θ+ + Λ−1
−

sin2 θ−. (76)

Taking the ratio of these quantities of interest, we find easily that

1

6KRGeff

=
Λ+ cos2 θ+ + Λ− cos2 θ−

Λ−1
+ sin2 θ+ + Λ−1

− sin2 θ−
= Λ+Λ−, (77)

where the final equality follows directly from the identity

sin2 θ− = sin2
(

θ+ +
π

2

)

= cos2 θ+. (78)

Eq. (77) is a special case of a more general product formula, true for any angle θ, which

follows from the identity

fT (θ)Σ∗f(θ)/
√

Λ+Λ− =

√

Λ+

Λ−

cos2(θ − θ+) +

√

Λ−

Λ+

cos2(θ − θ−)

= fT (θ + π/2) (Σ∗)−1 f(θ + π/2)/
√

Λ−1
+ Λ−1

− (79)

and is straighforward to verify.

Equation (77) is the product formula quoted in equation (39), and first derived in Berry-

man (2004a). A geometrical interpretation of the formula is obtained by considering, for

example, Figure 1. A plane rectangle is formed by considering the origin and the two points

labeled by (Λ+)−1 and (Λ−)−1 to be three of the four vertices of this rectangle. The area of

this rectangle is clearly the product (Λ+Λ−)−1. Similarly, the plane rectangle formed in the

same way from the origin and the points labeled 2Gv
u and 3Ku

R clearly has area 6Gv
uK

u
R. It

is seen in Figure 1 that, at least to graphical accuracy, these two rectangles are practically

indistinguishable — although in fact they are not identical in shape. Formula (77) shows

further that the areas of these two rectangles are always equal.
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Hashin, Z., and Shtrikman, S. (1962). A variational approach to the theory of the elastic

behaviour of polycrystals, J. Mech. Phys. Solids, 10: 343–352.

Hudson, J. A. (1981). Wave speeds and attenuation of elastic waves in material containing

cracks, Geophys. J. R. Astr. Soc., 64: 133–150.

Knight, R., and Nolen-Hoeksema, R. (1990). A laboratory study of the dependence of elastic

wave velocities on pore scale fluid distribution, Geophys. Res. Lett., 17: 1529–1532.

Mavko, G., and Jizba, D. (1991). Estimating grain-scale fluid effects on velocity dispersion

in rocks, Geophysics, 56: 1940–1949.

Meister, R., and Peselnick, L. (1966). Variational method of determining effective moduli of

polycrystals with tetragonal symmetry, J. Appl. Phys., 37, 4121–4125.

Milton, G. W. (2002). The Theory of Composites, Cambridge University Press, Cambridge,

UK, pp. 487–490.

Mukerji, T., and Mavko, G. (1994). Pore fluid effects on seismic velocity in anisotropic rocks,

Geophysics, 59: 233–244.

34



Murphy, William F., III (1982). Effects of Microstructure and Pore Fluids on the Acoustic

Properties of Granular Sedimentary Materials, Ph.D. Dissertation, Stanford University.

Nye, J. F. (1957). Physical Properties of Crystals: Their Representation by Tensors and

Matrices, Oxford Science Publications, Oxford.

O’Connell, R. J., and Budiansky, B. (1974). Seismic velocities in dry and saturated cracked

solids, J. Geophys. Res., 79: 5412–5426.

Peselnick, L., and Meister, R. (1965). Variational method of determining effective moduli

of polycrystals: (A) Hexagonal symmetry, (B) trigonal symmetry, J. Appl. Phys., 36,

2879–2884.

Rice, J. R., and Cleary, M. P. (1976). Some basic stress diffusion solutions for fluid-saturated

elastic porous media with compressible constituents, Rev. Geophys., 14: 227–241.

Skempton, A. W. (1954). The pore-pressure coefficients A and B, Geotechnique, 4: 143–147.

Walsh, J. B. (1969). New analysis of attenuation in partially melted rock, J. Geophys. Res.,

74: 4333–4337.

Watt, J. P., and Peselnick, L. (1980). Clarification of the Hashin-Shtrikman bounds on the

effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symme-

tries, J. Appl. Phys., 51, 1525–1531.

35

nijhuis2
Text Box
This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract W-7405-Eng-48.




